Speaker clustering quality estimation with logistic regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Speaker Clustering Quality Using Logistic Regression

This paper focuses on estimating clustering validity by using logistic regression. For many applications it might be important to estimate the quality of the clustering, e.g. in case of speech segments’ clustering, make a decision whether to use the clustered data for speaker verification. In the case of short segments speakers clustering, the common criteria for cluster validity are average cl...

متن کامل

Speaker recognition with penalized logistic regression machines

「罰金付きロジスティック回帰マシンを用いた話者認識」, ビルケネス・オイスティン(ノル ウェー工科大学),松井知子(統数研) Abstract We study on speaker recognition using a penalized logistic regression machine (PLRM) [1-3]. Parameters of a multiclass logistic regression model with the log-likelihood values of speaker Gaussian mixture models (GMMs) are discriminatively estimated and the model used for speaker decision. In speaker identification experimen...

متن کامل

Regularized Logistic Regression Fusion for Speaker Verification

Fusion of the base classifiers is seen as the way to achieve stateof-the art performance in the speaker verfication systems. Standard approach is to pose the fusion problem as the linear binary classification task. Most successful loss function in speaker verification fusion has been the weighted logistic regression popularized by the FoCal toolkit. However, it is known that optimizing logistic...

متن کامل

Probabilistic speaker identification with dual penalized logistic regression machine

This paper investigates a probabilistic speaker identification method based on the dual Penalized Logistic Regression Machines (dPLRMs). The machines employ kernel functions which map an acoustic feature space to a higher dimensional space as is the case with the Support Vector Machines (SVMs). Nonlinearity in discriminating each speaker is implicitly handled in this space. While SVMs maximize ...

متن کامل

Speaker identification with dual penalized logistic regression machine

This paper proposes a novel speaker identification method based on the dual Penalized Logistic Regression Machine (dPLRM) for general multi-class discrimination. The machine employs kernel functions which implicitly map an acoustic feature space to a higher dimensional space. Each speaker is discriminatively identified in this space implicitly. The penalized logistic regression model used in dP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Speech & Language

سال: 2021

ISSN: 0885-2308

DOI: 10.1016/j.csl.2020.101139